Collective coordinates theory for discrete soliton ratchets in the sine-Gordon model.
نویسندگان
چکیده
A collective coordinate theory is developed for soliton ratchets in the damped discrete sine-Gordon model driven by a biharmonic force. An ansatz with two collective coordinates, namely the center and the width of the soliton, is assumed as an approximated solution of the discrete nonlinear equation. The dynamical equations of these two collective coordinates, obtained by means of the generalized travelling wave method, explain the mechanism underlying the soliton ratchet and capture qualitatively all the main features of this phenomenon. The numerical simulation of these equations accounts for the existence of a nonzero depinning threshold, the nonsinusoidal behavior of the average velocity as a function of the relative phase between the harmonics of the driver, the nonmonotonic dependence of the average velocity on the damping, and the existence of nontransporting regimes beyond the depinning threshold. In particular, it provides a good description of the intriguing and complex pattern of subspaces corresponding to different dynamical regimes in parameter space.
منابع مشابه
Sine-Gordon ratchets with general periodic, additive, and parametric driving forces.
We study the soliton ratchets in the damped sine-Gordon equation with periodic nonsinusoidal, additive, and parametric driving forces. By means of symmetry analysis of this system we show that the net motion of the kink is not possible if the frequencies of both forces satisfy a certain relationship. Using a collective coordinate theory with two degrees of freedom, we show that the ratchet moti...
متن کاملReshaping-induced spatiotemporal chaos in driven, damped sine-Gordon systems
Spatiotemporal chaos arising from the competition between sine-Gordonbreather and kink-antikink-pair solitons by reshaping an ac force is demonstrated. After introducing soliton collective coordinates, Melnikov’s method is applied to the resulting effective equation of motion to estimate the parameterspace regions of the ac force where homoclinic bifurcations are induced. The analysis reveals t...
متن کاملLagrangian Formalism in Perturbed Nonlinear Klein-Gordon Equations
We develop an alternative approach to study the effect of the generic perturbation (in addition to explicitly considering the loss term) in the nonlinear Klein-Gordon equations. By a change of the variables that cancel the dissipation term we are able to write the Lagrangian density and then, calculate the Lagrangian as a function of collective variables. We use the Lagrangian formalism togethe...
متن کاملSoliton ratchets in homogeneous nonlinear Klein-Gordon systems.
We study in detail the ratchetlike dynamics of topological solitons in homogeneous nonlinear Klein-Gordon systems driven by a biharmonic force. By using a collective coordinate approach with two degrees of freedom, namely the center of the soliton, X(t), and its width, l(t), we show, first, that energy is inhomogeneously pumped into the system, generating as result a directed motion; and, secon...
متن کاملSoliton ratchets out of point-like inhomogeneities
– We introduce and study a novel design for a ratchet potential for soliton excitations. The potential is implemented by means of an array of point-like (delta) inhomogeneities in an otherwise homogeneous potential. We develop a collective coordinate theory that predicts that the effective potential acting on the soliton is periodic but asymmetric and gives rise to the ratchet effect. Numerical...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review. E, Statistical, nonlinear, and soft matter physics
دوره 90 4 شماره
صفحات -
تاریخ انتشار 2014